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High Accuracy Formulas for Calculation of the

Characteristic Impedance of Microstrip Lines
Dorel Homentcovschi, Member, IEEE

Abstract— An analytical formula for determination of the
characteristic impedance of a microstrip line assuming the quasi-

TEM mode of propagation is presented. The new form of the
fiual formulas contains only integrals which can be numerically
performed by means of the Gauss–Laguerre quadrature. The
method can be applied to multilayer lines and also to the case of
anistropic dielectrics. By using some suitable couformal mappings

the formulas obtained can be used to determine the character-
istic impedance of some cylindrical microstrip lines. We have

compared the results given by the proposed formulas with the
finite analytical solution available in a particular case and also

with results obtained by the substrip method, All the performed
tests indicate that the proposed formulas are highly accurate and
efficient relations for determining the characteristic impedance
of microstrip lines.

I. INTRODUCTION

T HERE is a vast amount of literature on the numeri-

cal computation of the characteristic impedance of mi-

crostrip. Wheeler [1] used an approximate conformal mapping

method to calculate the capacitance of a mixed dielectric

media microstrip. Sylvester [2], Bryant and Weiss [3], and

Farrar [4] treated the problem by the method of moments

and dielectric Green’s function. Yarnashita and Mittra [5]

presented an analysis based on a variational principle. Analysis

of various planar transmission lines have been carried out in

spectral domain by Itoh and Mittra [6] and Itoh [7]. Poh et

al. [8] considered the solution for the line capacitance of a

microstrip by means of a spectral domain analysis method.

J. F. Fikioris et al. [9] have given an exact solution for

the shielded printed microstrip lines by the Carleman–Vekua

method. Cheng and Everard [10] proposed a new method based

on the spectral domain approach. Medina and Homo in [11]

proposed two different approaches to speed up the evaluation

of spectral series. We mention also the paper [12] where an

analytic method was given for determining the capacitance

matrix of multiconductor planar and cylindrical lines,

In [13] an analytical method for solving the covered mi-

crostrip problem was given. The solution is exact but it is

expressed by means of the solution of an infinite system of

linear equations. The numerical examples provide a very good

approximation even in the case we consider only the first two

equations in the infinite set of linear equations.
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Auda in [14] introduced a new

It consists of an infinitesimally

of a dielectric cylinder partially

conducting ground plane.

In this paper we give a new

cylindrical microstrip line.

thin strip on the surface

embedded in a perfectly

form of the formulas for

computing the capacitance of a covered microstrip line. The

new form is simpler than the older one and also considerably

increases the precision. Further on, it is shown how the method

applies to the microstrips of multilayered substrate and to the

case of anisotropic dielectrics. By some suitable conformal

mappings the method can also be applied to the cylindrical

microstrip line considered in [14]. Also, there are given some

other examples of cylindrical microstrip lines which can be

analyzed by considering the equivalent planar lines resulting

from some conformal mappings.

To show how the method works, we applied it to some

planar and cylindrical structures, The first example consists

of a symmetrical covered microstripline. In this case a finite

analytical formula in terms of elliptical functions is available,

The comparison with exact solution shows that the error is

less than 0.07% through the range of microstrips of practical

interest. As a second application we computed the character-

istic impedance of an open microstrip. The obtained results

have shown that it is possible to compute the value 20 with

remarkable precision by using the proposed formulas. There

are given also some graphs for the physical characteristics of

the cylindrical microstrip line considered by Auda [14].

II. COMPUTATIONAL FORMULAS

We consider microstrip problems which can be converted

to the system of integral equations

/“
B(k)K(k) Cos (kz)dk = Vo, z 6 (–b, b) (1)

o

r El(k) sin (kz)dk = ‘0 sgn (x),
o 2(61 + 62)

$ c (–co, –b) u @, m) (2)

where V. and q. are the strip potential and charge, respectively.

The locally integrable function K(k) is assumed to be of the

form

K(k) = 1 – ij(k) exp (–2kh) (3)

where h > 0 and

~~mmfi(k) = Fjo. (4)
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The analysis carried out in [13] shows that the capacity of ‘lh~
the microstrip is given by the relation

2(61 + Ez)

c = #ln (2) – ;O

“) m
where &o results by solving an infinite system of linear equa- Fig. 1. Coveredmicrostrip line.
tions. A good approximation can be obtained by considering

only the first two equations in the infinite linear system
‘thl

by

(6)

The coefficients entering in this formula can be computed

relations

2

/

m Jj(kb)fi(k) exp (–2kh,) – exp (–kb) ~k (7)~o=—
7ro k

2

J

m ‘O@b)J2@b)ti(k) exp (–2kh) dk
Fig. 2. Multilayered microstrip line.

~1=—
k

(8)
no

Hence there is (12) as shown at the bottom of the page where

/

m J;(M) .
till = 4 ~q(k) exp (–2klz) dk. (9)

o

Here Jo, J1, J2 are the corresponding Bessel functions of

the first kind. The formulas (5), (6), (8), and (9) coincide with IV. MICROSTRIP ON MULTILAYERED SUBSTRATE

some relations given in [13]. The coefficient do in this new To show how the method applies in the case of’ multilayered

form is more suitable for numeric computation. A method for microstrips we consider the microstrip line with two dielectric
computing the integrals (7)–(9) shall be given in Section VIII. layers shown in Fig. 2. In this case the expressions for the

In the case of the quasi-TEM mode of propagation and potentials in domains DI, D2, D3 are

where the line has negligible loss, the characteristic impedance

20 of the microstrip line is given by
/

V(l)(Z, y) = o
sinh (k(hl – y))

“A(k)— COS(kz) dk (13)
sinh(khl)

1
zo=—v- (10)

where v is the velocity of light in vacuum, C is the capac-

itance per unit length of the given microstrip, and C’. is the

capacitance per unit length for the same structure but with

61 = E2 = Q1.

III. CLASSICAL MICROSTRIP PROBLEM

In the case of the covered microstrip line consisting of

a conducting strip of zero thickness placed on a dielectric

substrate (Fig. 1), the kernel ~(k) in (1) is [13]

K(k) =
Cl + Q

(11)
cl coth (khl) + 62 coth (khz) “

and (14) and (15) as shown at the bottom of the page.

These potentials satisfy the continuity condition along the

surfaces y = O and y = – hz, the boundary conditions along

the planes y = hl and y = – (hz + h3) and the charge free

condition along the plane y = —hz. By imposing the obvious

conditions along the circuit interface y = O we get

K(k) =
Cl + e~ _el+e2

(16)
Cl coth(khl) + C2A2 = A

and hence

[

exp (2k(h – hi))
H(k) = 2 ‘I (1 – exp(–z~hl))

exp (2k(h – hz)) 1“2(1-exp(-2khz)) ‘1 ‘A ‘(17)

Zexp(zk(h – hi))/(l – exp(–2khl)) + 2q. exp(2k(h – hz))/(1 – exp(–2khz))
ij(k) =

coth (khl) + G coth (khz)

r {w(z, y) =o A(k)
C2+ C3coth (khz) coth (kh3)

sinh (ky) + cosh (ky)} cos (km) dk
C2coth (kh2) + e3 coth (khg)

/
v@)(z, y) = omA(k)

Q cosh (2khz) sinh (k(hz + lw + y))
COS (km) dk

ez sinh (kh3) cosh (khz) + e3 sinh (khz) cosh (kh,s)

(12)

(14)

(15)
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Yt B

Fig. 3.
ducting

where

Al =

Cylindrical microstrip line partially embedded in a perfectly con-
pkme.

again we have denoted h = min (hl, hz ) and also

C3coth (kh3) – cz

~2coth (kh2) + C3coth (kh3) ‘

*2 = 62 + E3 coth (khz) coth (kh3)

C2coth (kh2) + 63 coth (kh3) ‘

V. THE MICROSTRIP ON ANISOTROPIC DIELECTRIC

In the case the domain -D2 in Fig. 1 is filled with an

unisotropic dielectric characterized by permittivity tensor

we can write

/
v(l)(z, g) = ~mA(k)

sinh (k(hl – y)) COS~kz) ~k

sinh(khl)

/
V(2)(Z,y) = ~mA(k)

sinh (k(h. + K2y))

sinh (kh.)

Cos(kx-:y)dk

where

(18)

(19)

(20)

(21)

(22)

By imposing the boundary condition on the circuit plane

y = O we get the expression

K(k) =
61 + &e

(23)
Cl coth (khl) + ~. coth (khc)

and also in (24) shown at the bottom of the page.

We have now h = min (hl, h,).

VI. CYLINDRICAL MICROSTRIP LINE

PARTIALLY EMBEDDED IN A GROUND PLANE

The cylindrical line we consider in this section consists

of an infinitesimally thin strip on the surface ‘of a dielectric

cylinder partially embedded in a perfectly conducting ground

plane (see Fig. 3). In the particular case y = O this problem

was considered by Auda [14] by solving numerically some

series equations. Let a be the circle radius and a, ~, T the

angles in Fig. 3 determining the geometry of the problem (in

Fig. 3 we have y < O). Then, the complex function

d+ ~n Cos((a! +7)/2) . Cos((p + 7)/2)

sin ((a – 7)/2) . sin ((,B – 7)/2)

—i
()

;+7 (25)

where in(l) = O and lm(ln(Z1)) 6 (O, 27r), gives a con-

formal mapping of the domain in the Z-physical plane into

the covered microstrip in the z-plane in Fig. 1 with particular

parameters

hl=7r, h2=; +~ (26)

b“ntzE%=Em’27)
As the capacitance of a physical system is an invariant

quantity by a conformal mapping, the linear capacitance of the

structure in Fig. 3 can be determined by using the formulas

given in Section II with geometrical parameters determined by

relations (26), (27). We have also the relation

2a cos y
EX – iEy = (EZ – iEV) .

22 – a2 cos2y”
(28)

Thus, we can also determine the electric field intensity of

the cylindrical line by means of the electrical field intensity of

the equivalent planar microstrip structure.

VII. OTHER CYLINDRICAL LINES WHICH CAN BE DESCRIBED

BY MEANS OF PLANAR MICROSTRIP STRUCTURES

We consider in this section other three cylindrical microstrip

lines which can be described in quasi-TEM regime by means

of some equivalent planar microstrip structures resulting from

conformal mappings.

~(k) = 2exp(2~(h – hi))/(1 – exp(–2khl)) + 2+exp(2k(h – hz))/(1 - exp(–2kh.))
(24)

coth (khl) + c, coth (khe)
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Fig. 4. Cylindrical structure A.

Fig. 6. Cylindrical structure C.

Fig. 5. Cylindrical structure B

A. Structure

The cylindrical microstrip line drawn in Fig. 4 consists of

the perfectly conducting, infinitesimally thin, strips AB, CD

placed on the circular surface and on the chord of a dielectric

cylinder of circular segment cross section. By means of

the complex variable function (25), where now we have

lm(ln(Z1)) ● (–n, r) the domain in the Z-plane is mapped

again in the domain in Fig. 1. The strip length 2b is determined

by relation (27) and we have also

(29)

The capacity of the line, and hence the characteristic

impedance, can be determined by using formulas given in

Section 11.

B. Structure B

The structure B, shown in Fig. 5, consists of a perfectly

conducting strip Al? (infinitesimally thin) on the surface of

a dielectric cylinder with a circular segment cross section.

The dielectric cylinder lies on a perfectly conducting grounded

plane. The geometry of the problem can be characterized by

means of the radius a and by angles a, ,0 and ~. By the

conformal mapping (25) the physical domain is mapped into

the covered microstrip in Fig. 1 with the particular parameters

hi=;–~,hz=;+~. (30)

The parameter b is again given by relation (27) and hence the

capacitance of the line is given by relation (5).

C. Structure c

The cylindrical structure in Fig. 6 is composed of a perfectly

conducting strip on the surface of a dielectric circular cylinder

lying on a perfectly conducting grounded plane. The radius

YI B

of the circular cross section is denoted by a and the position

of the strip is described by angles a and ~. By means of the

conformal mapping

11 ( Cos c1 Cos/3 )- ‘i
~.——+—

Z 4a l+ sina
+

I+ sin@ – 2a
(31)

the line in the Fig. 6 is conformably mapped into the line in

Fig. 1 with the particular parameters

hl=eo,hz=~ (32)

and

b=~
(

Cosa Cos/3

)4a l+sina–l+sin~ “
(33)

Hence the capacitance of the line is given again by formula [5).

VIII. NUMERICAL EXAMPLES

To compute the integrals entering in formulas (7)–(9) we

have written

/

m~(f$7b)& =

k /
mf(t, b) exp (-t) dt (34)

o 0

where

~(t b, = 3’(t/(ah), b) exp (t)
>

t
(35)

The integral on the right-hand side of relation (34) can

be computed by using a 32-point Gauss–Laguerre quadrature

formula in double precision [15], Numerical experiments in-

dicated that if we put a = 4 for b z 1 and a = 13 for b <:1,

we obtain at least five significant digits in the result for values

of the parameter b in the range [0,005, 5.].

A. Application to a Symmetrically Covered Microstrip

To see how the given formulas work, we considered again

the particular case of the symmetrical shielded microstrip

(hl = h2 = h). In this case a finite analytical expression

for the line capacitance is available [16]

c
K(k)

– z(~l + ~2) K(k,)exact —

where

(36)

(37)

Here K(k) is the complete elliptical integral of the first kind.
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TABLE I
COMPARISONOF THE C (EXACT) WITH C (APPR.) IN

THE CASE OF SYMMETRICAL COVERED STRIPLINE

F
h* = h/(2b)

5.000
2.000

I 1.000

L
.500
.250
.125
.100
.075

w/h

0.1
0.2
0.4
0.7
1.0
2.0
4.0
10.

C(ezactty)

.969823E+O0

.134626E+01

.187554E+01

.288224E+01

.488254E+01

.888254E+01

.108825E+O2
,142160E+02

Cl(apprz)

.969826E+O0

.134627E+01

.187555E+01

.288224E+01

.488248E+01

.888211E+01

.1088O5E+O2

.142072E+02

Rel.err.

.26E-05

.37E-05

.50E-05

-.21E-05

-.12E-04

-.49E-04

-.19E-03

-.61E-03

TABLE II
COMPARISON OF THE PROPOSED METHOD (PM), SPECTRAL

DOMAIN METHOD (CE), AND SUBSTRIP METHOD (SS)

m THE CHARACTERISTIC IMPEDANCE CALCULATIONS

PM

134.72
112.50
90.385
72.789
61.885
42.293
26.454
12.726

CE

134.78
112.58
90.482
72.892
61.987
42.376
26.503
12.745

Ss
134.63
112.43
90.325
‘72.741
61.845
42.267
26.438
12.717

PM

109.01
90.952
72.975
58.676
49.821
33.934
21.143
10.125

CE

109.06

91.020

73.054

58.761

49.904

34.001

21.183

10.140

Ss
108.94

90.891

72.927

58.638

49.789

33.913

21.131

10.118

EW3LE III

COMPARISONOF THE PROPOSEDMETHOD (PM), SPECTRAL
DOMAIN METHOD (CE), AND SUBSTRIP METHOD (SS)

IN THE CHARACTERISTIC IMPEDANCE CALCULATIONS

w/h

0.1
0.2
0.4
0.7
1.0
2.0
4.0
10.

PM

94.670

78.955

63.312

50.870

43.166

29.357

18.258

8.7260

CE

94.718

79.015

63.381

50.943

43.238

29.415

18.282

8.7392

Ss
94.605

78.902

63.270

50.837

43.139

29.338

18.247

8.7197

PM

65.578

54.658

43.787

35.143

29.792

20.212

12.536

5.9720

CE
65.612

54.699

43.835

35.194

29.843

20.249

12.555

5.9808

Ss
65.534

54.622

43.759

35.120

29.773

20.200

12.528

5.9678

We compared the values for the capacitance given by

proposed formulas (5)–(9) with the finite exact capacitance

given by relation (36). The results are given in Table I. It is to

be noticed that the results given by the new formulas are better

than those obtained in [13]. In fact the maximum relative error

is now 0.061?10 (for h* = h/(2b) = 0.075) instead of 270 as

was the corresponding value obtained in the cited paper.

B. Calculation of the Characteristic Impedance

of an Open Microstrip Line

We used the formulas (5)–(10) for the evaluation of the

characteristic impedance of the open microstrip line. The

computed impedance values for the microstrip with different
dielectric constants and w/h = 2b/h2 ratios are shown in

Table II and Table III. For purposes of comparison, the results

for the same transmission line calculated by the spectral-

domain method of Cheng and Everard [10] (denoted by CE),

and those obtained by sub strip method [2], [4], are also

included in the tables (denoted by SS).

60 [ [

1

0
0 10 20 30 40 60 70 80 90

(beta-alfa~~

Fig. 7. Change of the capacitance with strip width.

It is easy to see that the proposed formulas (5)–(10) yields

calculated impedance values which lies between the values

obtained by CE and SS methods; the maximum relative error

with respect to the values given by substrip method is less than

0.07% and the comparison with values computed by spectral

domain approach gives a maximum difference less than 0.2%.

C. Application to the Cylindrical Microstrip Line Partially

Embedded in a Perfectly Conducting Plane

To see how the methods works in the case of a cylindrical

microstrip line resulting by a conformal mapping from a planar

microstrip structure we considered the structure studied by

Auda in [14]. The equivalent geometrical parameters hl, hz

and b were determined by formulas (26)–(27) where y was

set equal to zero. Further on, the capacitance of the line was

computed by means of formulas (5)–(9). The change of the

capacitance of a symmetrical cylindrical microstrip, partially

embedded in a perfectly conducting plane, with the strip width

is shown in Fig. 7. The change of the effective dielectric

constant normalized capacitance C(G) /C(e, = 1)) of the

same cylindrical line is plotted in Fig. 8. For two differed wide

strips and in the dielectric constant range 1< c. <36. It is to

be noticed in the considered range that the linear dependence

of the effective dielectric constant with respect to the dielectric

constant for every strip width. In fact the slope of each of the

effective dielectric lines depend upon the corresponding strip

widths.

IX. CONCLUSION

The paper gives new formulas for computation of the ca-

pacitance and characteristic impedance of microstrip lines. The

method requires only the numerical computation of integrals

which can be evaluated by using the Gauss–Laguerre quadra-

ture formulas. In the paper, it is shown how the methods apply

in the case of covered microstrips on multilayer substrates and

also in the case of anisotropic dielectrics. The method can

also be applied to analyze some cylindrical microstrips. The
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Fig. 8. Change of the capacitance with relative permittivity,

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

given numerical examples show that the method is easy to

implement and highly accurate,
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