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High Accuracy Formulas for Calculation of the
Characteristic Impendance of Microstrip Lines

Dorel Homentcovschi, Member, IEEE

Abstract— An analytical formula for determination of the
characteristic impedance of a microstrip line assuming the quasi-
TEM mode of propagation is presented. The new form of the
final formulas contains only integrals which can be numerically
performed by means of the Gauss-Laguerre quadrature. The
method can be applied to multilayer lines and also to the case of
anistropic dielectrics. By using some suitable conformal mappings
the formulas obtained can be used to determine the character-
istic impedance of some cylindrical microstrip lines. We have
compared the results given by the proposed formulas with the
finite analytical solution available in a particular case and also
with results obtained by the substrip method. All the performed
tests indicate that the proposed formulas are highly accurate and
efficient relations for determining the characteristic impedance
of microstrip lines.

1. INTRODUCTION

HERE is a vast amount of literature on the numeri-

cal computation of the characteristic impedance of mi-
crostrip. Wheeler [1] used an approximate conformal mapping
method to calculate the capacitance of a mixed dielectric
media microstrip. Sylvester [2], Bryant and Weiss [3], and
Farrar [4] treated the problem by the method of moments
and dielectric Green’s function. Yamashita and Mittra [5]
presented an analysis based on a variational principle. Analysis
of various planar transmission lines have been carried out in
spectral domain by Itoh and Mittra [6] and Itoh [7]. Poh et
al. [8] considered the solution for the line capacitance of a
microstrip by means of a spectral domain analysis method.

J. F. Fikioris et al. [9] have given an exact solution for
the shielded printed microstrip lines by the Carleman—Vekua
method. Cheng and Everard [10] proposed a new method based
on the spectral domain approach. Medina and Horno in [11]
proposed two different approaches to speed up the evaluation
of spectral series. We mention also the paper [12] where an
analytic method was given for determining the capacitance
matrix of multiconductor planar and cylindrical lines.

In [13] an analytical method for solving the covered mi-
crostrip problem was given. The solution is exact but it is
expressed by means of the solution of an infinite system of
linear equations. The numerical examples provide a very good
approximation even in the case we consider only the first two
equations in the infinite set of linear equations.
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Auda in [14] introduced a new cylindrical microstrip line.
It consists of an infinitesimally thin strip on the surface
of a dielectric cylinder partially embedded in a perfectly
conducting ground plane.

In this paper we give a new form of the formulas for
computing the capacitance of a covered microstrip line. The
new form is simpler than the older one and also considerably
increases the precision. Further on, it is shown how the method
applies to the microstrips of multilayered substrate and to the
case of anisotropic dielectrics. By some suitable conformal
mappings the method can also be applied to the cylindrical
microstrip line considered in [14]. Also. there are given some
other examples of cylindrical microstrip lines which can be
analyzed by considering the equivalent planar lines resulting
from some conformal mappings.

To show how the method works, we applied it to some
planar and cylindrical structures. The first example consists
of a symmetrical covered microstripline. In this case a finite
analytical formula in terms of elliptical functions is available.
The comparison with exact solution shows that the error is
less than 0.07% through the range of microstrips of practical
interest. As a second application we computed the character-
istic impedance of an open microstrip. The obtained results
have shown that it is possible to compute the value Zy with
remarkable precision by using the proposed formulas. There
are given also some graphs for the physical characteristics of
the cylindrical microstrip line considered by Auda [14].

II. COMPUTATIONAL FORMULAS

We consider microstrip problems which can be converted
to the system of integral equations

/00 B(R)K (k) cos (ka)dk = Vo, 7 € (=b, ) (D)
0

/Ooo B(k) sin (kz)dk = Zé-lqi—@_)

z € (—o0, —b)U (b, 0) (2)

sgn (z),

where Vj and gg are the strip potential and charge, respectively.
The locally integrable function K (k) is assumed to be of the
form

K(k) = 1 fi(k) exp (—2kh) 3)
where A > 0 and

Jim 7i(k) = . )
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The analysis carried out in [13] shows that the capacity of
the microstrip is given by the relation

_ 2a+e) 5)

%ln (2) — z)o
where bg results by solving an infinite system of linear equa-
tions. A good approximation can be obtained by considering

only the first two equations in the infinite linear system

=2

ai
—. (©)

— a11
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The coefficients entering in this formula can be computed
by relations

2/°° J2(kb)7i(k) exp (—2kh) — exp (—kb)

aop = - L dk  (7)

Gy = _72;/0 Mﬁ(k} exp(—2kh)dk  (8)
oo 72
Gy = 4/ J2 sfb)ﬁ(k)exp(—zkh) dk. ©)
0

Here Jy, Jq, Jo are the corresponding Bessel functions of
the first kind. The formulas (5), (6), (8), and (9) coincide with
some relations given in [13]. The coefficient d¢ in this new
form is more suitable for numeric computation. A method for
computing the integrals (7)-(9) shall be given in Section VIIIL

In the case of the quasi-TEM mode of propagation and
where the line has negligible loss, the characteristic impedance
Zy of the microstrip line is given by

1
('AV} CC()

where v is the velocity of light in vacuum, C is the capac-
itance per unit length of the given microstrip, and Cjy is the
capacitance per unit length for the same structure but with
€1 — €2 = €9.

Zop =

(10)

III. CLASSICAL MICROSTRIP PROBLEM

In the case of the covered microstrip line consisting of
a conducting strip of zero thickness placed on a dielectric
substrate (Fig. 1), the kemel K (k) in (1) is [13]

€1 1 €2
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Fig. 1. Covered microstrip line.

Fig. 2. Multilayered microstrip line.

Hence there is (12) as shown at the bottom of the page where

h = Inil’l(h]_7 hg), €p = 62/61.

IV. MICROSTRIP ON MULTILAYERED SUBSTRATE

To show how the method applies in the case of multilayered
microstrips we consider the microstrip line with two dielectric
layers shown in Fig. 2. In this case the expressions for the
potentials in domains Dy, Do, D3 are

e sinh (B(hy — )
vW(e, y)—/o A(k) sinh (khy)

and (14) and (15) as shown at the bottom of the page.
These potentials satisfy the continuity condition along the
surfaces y = 0 and y = —hs, the boundary conditions along
the planes y = hy and y = —(hg + h3) and the charge free
condition along the plane y = —hy. By imposing the obvious
conditions along the circuit interface y = 0 we get
€1+ €2

. _ € + €9
K(k) = €1 coth (kh1) + €2As - A

cos (kx)dk (13)

(16)

and hence
exp (2k(h — hy))
(1 — exp (—=2khi))
exp (2k(h — h2))

fi(k) = 2| &1

= ALl/A (17
(k) e1 coth (khy) + €3 coth (khg) an L —exp (—2kha)) /A an
S = 2exp (2k(h — h1))/ (1 — exp (—2kh1)) + 2¢, exp (2k(h — ha))/(1 — exp (—2kh2)) (12)
7i(k) = coth (kh1) + €, coth (khs)
VO(z, y) = /Oo A(k){ : ;:;(C]S;L:)(Zhiz zzt: Eizz; sinh (ky) + cosh (ky)} cos (kx) dk (14)
(3) . e €2 cosh (2I€h2) sinh (k(hz + h3 + y))
Vi@, y) = /0 Alk) ep sinh (kh3) cosh (khz) + €3 sinh (khz) cosh (khs) cos (k) dk (15)
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Fig. 3. Cylindrical microstrip line partially embedded in a perfectly con-
ducting plane.

whére again we have denoted & = min (hq, hz) and also

_ €3 coth (kh3) — €9
" egcoth (khy) + ez coth (khg)’
€9 + €3 coth (khz) coth (khg)

o €9 coth (kh2) + e3 coth (khg) '

V. THE MICROSTRIP ON ANISOTROPIC DIELECTRIC

In the case the domain Dy in Fig. 1 is filled with an
unisotropic dielectric characterized by permittivity tensor

€11 €2 0
€= |ean €9 O (18)

0 0 €33

we can write

sinh (k(hy — y))

) Y
Vi(z, y)—/o A(k) sinb (khn) cos (kz)dk  (19)

2 [ sinh (k(he + Kay))
V@ (g, y) = /0 AR —on (o)

. cos (kx = y) dk (20)
€11
where
€e = [ €11€22 — 6%2 (21)
he = hol(y, Ky = <5 22)
€22

By imposing the boundary condition on the circuit plane
y = 0 we get the expression

€1 + €e

K =
(k) €1 coth (khy) + €, coth (kh,)

(23)

and also in (24) shown at the bottom of the page.
We have now & = min (hy, h.).
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VI. CYLINDRICAL MICROSTRIP LINE
PARTIALLY EMBEDDED IN A GROUND PLANE

The cylindrical line we consider in this section consists
of an infinitesimally thin strip on the surface of a dielectric
cylinder partially embedded in a perfectly conducting ground
plane (see Fig. 3). In the particular case v = 0 this problem
was considered by Auda [14] by solving numerically some
series equations. Let a be the circle radius and o, 3, 7y the
angles in Fig. 3 determining the geometry of the problem (in
Fig. 3 we have « < 0). Then, the complex function

<Z - acos*y)
z:ln -
Z + acosy

in \/ cos (@ +7)/2) -cos (8 +7)/2)

sin (o~ )/2) s (6~ 7)/2)

-(5+)

where In(1) = 0 and Im(In(Z1)) € (0, 27), gives a con-
formal mapping of the domain in the Z-physical plane into
the covered microstrip in the z-plane in Fig. 1 with particular
parameters

(25)

b=, ho =T+ 26)
B sin ((8 ~v)/2) - cos ((a +7)/2)
b=l \/ (0= /2 s+

As the capacitance of a physical system is an invariant
quantity by a conformal mapping, the linear capacitance of the
structure in Fig. 3 can be determined by using the formulas
given in Section II with geometrical parameters determined by
relations (26), (27). We have also the relation

2a cosy

Ex —ibEy = (E, — —_——
x —iby ={ Z? — a? cosy

i) - (28)

Thus, we can also determine the electric field intensity of
the cylindrical line by means of the electrical field intensity of
the equivalent planar microstrip structure.

VII. OTHER CYLINDRICAL LINES WHICH CAN BE DESCRIBED
BY MEANS OF PLANAR MICROSTRIP STRUCTURES

We consider in this section other three cylindrical microstrip
lines which can be described in quasi-TEM regime by means
of some equivalent planar microstrip structures resulting from
conformal mappings.

(k) = 2exp (2k(h = h1))/(1 — exp (—=2kh1)) + 2, exp (2k(h — h2))/(1 — exp (—2khe))

coth (khy) + €, coth (kh,)

(24)
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Fig. 4. Cylindrical structure A.

Fig. 5. Cylindrical structure B.

A. Structure A

The cylindrical microstrip line drawn in Fig. 4 consists of
the perfectly conducting, infinitesimally thin, strips AB, CD
placed on the circular surface and on the chord of a dielectric
cylinder of circular segment cross section. By means of
the complex variable function (25), where now we have
Im(In(Z1)) € (—m, w) the domain in the Z-plane is mapped
again in the domain in Fig. 1. The strip length 2b is determined
by relation (27) and we have also

T 3T
hi=—— ho = — .
1 2 Y, N2 9 +’Y

(29)

The capacity of the line, and hence the characteristic
impedance, can be determined by using formulas given in
Section 1II.

B. Structure B

The structure B, shown in Fig. 5, consists of a perfectly
conducting strip AB (infinitesimally thin) on the surface of
a dielectric cylinder with a circular segment cross section.
The dielectric cylinder lies on a perfectly conducting grounded
plane. The geometry of the problem can be characterized by
means of the radius o and by angles «, 8 and v. By the
conformal mapping (25) the physical domain is mapped into
the covered microstrip in Fig. 1 with the particular parameters

™

T
h1—§—% h2—§+’)’~

The parameter b is again given by relation (27) and hence the
capacitance of the line is given by relation (5).

(30)

C. Structure C

The cylindrical structure in Fig. 6 is composed of a perfectly
conducting strip on the surface of a dielectric circular cylinder
lying on a perfectly conducting grounded plane. The radius
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Fig. 6. Cylindrical structure C.

of the circular cross section is denoted by a and the position
of the strip is described by angles o and 8. By means of the
conformal mapping

. 1+i cos cos 3 i
 Z  4a\l+4sina  1+sing 2a

the line in the Fig. 6 is conformally mapped into the line in
Fig. 1 with the particular parameters

3D

1

hl = 00, h‘z = — (32)
2a
and
b i cos'a 3 cos.ﬂ . (33)
4a\1+sine 1+sinf

Hence the capacitance of the line is given again by formula (5).

VIII. NUMERICAL EXAMPLES

To compute the integrals entering in formulas (7)—(9) we
have written

oo F_(kl@ ~ oo i
/0 k dk = /0 f(t, b)exp (—t)dt (34)

where

F(t/(ab), b)

f(t, b)) = — exp (t).

The integral on the right-hand side of relation (34) can
be computed by using a 32-point Gauss—Laguerre quadrature
formula in double precision [15]. Numerical experiments in-
dicated that if we put @ = 4 for b > 1 and a = 13 for b < 1,
we obtain at least five significant digits in the result for values
of the parameter b in the range [0.005, 5.].

(35)

A. Application to a Symmetrically Covered Microstrip

To sec how the given formulas work, we considered again
the particular case of the symmetrical shielded microstrip
(hi = ha = h). In this case a finite analytical expression
for the line capacitance is available [16]

K(k)
Cemact = 2(61 =+ GQ)W (36)
where
k = tanh (;—2), E =+1- k2 (37

Here K (k) is the complete elliptical integral of the first kind.
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TABLE 1
ComparisoN oF THE C (Exact) with C (APPR.) IN
THE CASE OF SYMMETRICAL. COVERED STRIPLINE

hx = h/(2b) | C(ezactly) C1(apprz) Rel.err.
5.000 .969823E400 | .969826E4-00 | .26E-05
2.000 .134626E+01 | .134627E+01 | .37E-05
1.000 .187554E4-01 | .187555E+01 | .50E-05
.500 .288224E+01 | .288224E+01 | -.21E-05
.250 .488254E+01 | .488248E+01 | -.12E-04
125 .888254E+4-01 | .888211E+01 | -.49E-04
.100 .108825E+02 | .108305E+02 | -.19E-03
.075 .142160E+402 | .142072E+02 | -.61E-03
TABLE II

COMPARISON OF THE PROPOSED METHOD (PM), SPECTRAL
DoMAIN METHOD (CE), AND SUBSTRIP METHOD (SS)
IN THE CHARACTERISTIC IMPEDANCE CALCULATIONS

w/h | PM CE SS PM CE SS

0.1 134.72 | 134.78 | 134.63 | 109.01 | 109.06 | 108.94
0.2 112.50 | 112.58 | 112.43 | 90.952 | 91.020 | 90.891
0.4 |90.385 | 90.482 | 90.325 | 72.975 | 73.054 | 72.927
0.7 | 72.789 | 72.892 | 72.741 | 58.676 | 58.761 | 58.638
1.0 | 61.885 | 61.987 | 61.845 | 49.821 | 49.904 | 49.789
2.0 | 42.293 | 42.376 | 42.267 | 33.934 | 34.001 | 33.913
4.0 |26.454 | 26.503 | 26.438 | 21.143 | 21.183 | 21.131
10. 12.726 | 12.745 | 12.717 | 10.125 | 10.140 | 10.118

TABLE III

COMPARISON OF THE PROPOSED METHOD (PM), SPECTRAL
DomaIN METHOD (CE), AND SUBSTRIP METHOD (SS)
IN THE CHARACTERISTIC IMPEDANCE CALCULATIONS

w/h | PM CE SS PM CE SS

0.1 | 94.670 | 94.718 | 94.605 | 65.578 | 65.612 | 65.534
0.2 | 78.955 | 79.015 | 78.902 | 54.658 | 54.699 | 54.622
0.4 | 63.312 | 63.381 | 63.270 | 43.787 | 43.835 | 43.759
0.7 | 50.870 | 50.943 | 50.837 | 35.143 | 35.194 | 35.120
1.0 | 43.166 | 43.238 | 43.139 | 29.792 | 29.843 | 29.773
2.0 |29.357 [ 29.415 | 29.338 | 20.212 | 20.249 | 20.200
4.0 |18.258 | 18.282 | 18.247 | 12.536 | 12.555 | 12.528
10. | 8.7260 | 8.7392 | 8.7197 | 5.9720 | 5.9808 | 5.9678

We compared the values for the capacitance given by
proposed formulas (5)-(9) with the finite exact capacitance
given by relation (36). The results are given in Table L It is to
be noticed that the results given by the new formulas are better
than those obtained in [13]. In fact the maximum relative error
is now 0.061% (for h* = h/(2b) = 0.075) instead of 2% as
was the corresponding value obtained in the cited paper.

B. Calculation of the Characteristic Impedance
of an Open Microstrip Line

We used the formulas (5)—(10) for the evalvation of the
characteristic impedance of the open microstrip line. The
computed impedance values for the microstrip with. different
dielectric constants and w/h = 2b/hy ratios are shown in
‘Table II and Table III. For purposes of comparison, the results
for the same transmission line calculated by the spectral-
domain method of Cheng and Everard [10] (denoted by CE),
and those obtained by substrip method [2], [4], are also
included in the tables (denoted by SS).
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Fig. 7. Change of the capacitance with strip width.

It is easy to see that the proposed formulas (5)-(10) yields
calculated impedance values which lies between the values
obtained by CE and SS methods; the maximum relative error.
with respect to the values given by substrip method is less than
0.07% and the comparison with values computed by spectral
domain approach gives a maximum difference less than 0.2%.

C. Application to the Cylindrical Microstrip Line Partially
Embedded in a Perfectly Conducting Plane

To see how the methods works in the case of a cylindrical
microstrip line resulting by a conformal mapping from a planar
microstrip structure we considered the structure studied by
Auda in [14]. The equivalent geometrical parameters hq, fiz
and b were determined by formulas (26)—(27) where v was
set equal to zero. Further on, the capacitance of the line was
computed by means of formulas (5)—(9). The change of the
capacitance of a symmetrical cylindrical microstrip, partially
embedded in a perfectly conducting plane, with the strip width
is shown in Fig. 7. The change of the effective dielectric
constant normalized capacitance C(e,)/C(e, = 1)) of the
same cylindrical line is plotted in Fig. 8. For two differed wide
strips and in the dielectric constant range 1 < e, < 36. It is to
be noticed in the considered range that the linear dependence
of the effective dielectric constant with respect to the dielectric
constant for every strip width. In fact the slope of each of the
effective dielectric lines depend upon the corresponding strip
widths.

IX. CONCLUSION

The paper gives new formulas for computation of the ca-
pacitance and characteristic impedance of microstrip lines. The
method requires only the numerical computation of integrals
which can be evaluated by using the Gauss—Laguerre quadra-
ture formulas. In the paper, it is shown how the methods apply
in the case of covered microstrips on multilayer substrates and
also in the case of anisotropic dielectrics. The method can
also be applied to analyze some cylindrical microstrips. The
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Fig. 8. Change of the capacitance with relative permittivity.

given numerical examples show that the method is easy to
implement and highly accurate.
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